under Windows®, which may be adapted to play the compressed audio files stored in the play list. In this scenario, the function buttons may be adapted for use in a passthroughtype mode using the accompanying software driver to control various features of the audio player software, e.g., Music Match, instead of controlling the special purpose circuit. When the primary operating system such as Windows® is either fully off (S5) or in "hibernate" (suspend to HDD or S4) mode, operation of the special purpose circuit may proceed to play compressed audio files from the play list as described hereinabove, wherein the function buttons control the special purpose circuit. [0064] It is noted that the power states described above (i.e., fully on, sleep/suspend to RAM, fully off, hibernate/ suspend to HDD) are often referred to using the Advanced Configuration and Power Interface ("ACPI") standard conventions, as follows: The typical operating system (e.g., Windows®) supports six system power states, referred to as S0 (fully on and operational) through S5 (power off). Each state is characterized by the following: power consumption, i.e. how much power the computer uses; software resumption, i.e, from what point the operating system restarts; hardware latency, i.e., how long it takes to return the computer to the working state; and system context, i.e. how much system context is retained, or whether the operating system must reboot to return to the working state. State S0 is the working state. States S1, S2, S3, and S4 are sleeping states, in which the computer appears off because of reduced power consumption but retains enough context to return to the working state without restarting the operating system. State S5 is the shutdown or off state. A system is waking when it is in transition from the shutdown state (S5) or any sleeping state (S1-S4) to the working state (S0), and it is going to sleep when it is in transition from the working state to any sleep state or the shutdown state, the system cannot enter one sleep state directly from another; it must always enter the working state before entering any sleep state. For example, a system cannot transition from state S2 to S4, nor from state S4 to S2. It must first return to SO, from which it can enter the next sleep state. Because a system in an intermediate sleep state has already lost some operating context, it must return to the working state to restore that context before it can make an additional state transition. [0065] Referring now to FIG. 2, in conjunction with FIG. 3, an exemplary sequence 200 for the power up of the mini-OS and initiation of the player function, in one embodiment of the present invention, is illustrated. As stated above, at some time prior to the initiation of the audio player function of a PC equipped with the present invention, the user downloads (not shown in FIG. 2) the audio files of interest to the HDD 36 or burns a CD-ROM that is placed in the CD-ROM drive 38 for use with the audio player feature of the present invention. As shown, at step 201, the sequence 200 begins when the user presses either an audio player power switch 54 or the computer's main power switch (not shown in FIG. 3), to turn the system on. A determination is then made, at step 202, whether the computer is to boot in normal operation mode or compressed audio performance mode. This determination is typically made in the BIOS, based on whether the computer's power switch or an audio player power switch 54 was used to turn on the computer, although those skilled in the art will recognize that this determination could alternatively be made by an application program or an operating system that provides such capability (e.g. Windows® 98). If the computer's power switch was used to turn on the computer, then the system boots to normal operation mode, at step 203, and the normal operating system (e.g., Windows® 98) is loaded into system RAM 30 and executed. If an audio player power switch 54 was used to turn on the computer, the mini-OS is loaded into system RAM 30, at step 204. At step 203, the mini-OS initializes the system components including one or more of the North Bridge 28, South Bridge 32, special purpose circuit 40, hard drive 36, CD-ROM drive 38, codec 42, and CPU 26. [0066] Since no audio decompression request will be pending upon system initialization (i.e., the memory buffer is not full), which determination is made at step 208, the system waits for input from one of the function keys 48, at step 207, until one of the function keys 48 is pressed, at which point the appropriate function is executed and the LCD display updated, as appropriate, at step 206. If the command includes a request from the user to play audio, an audio decompression request will be pending at this time, which determination is made at step 208. Since no compressed audio file(s) are in system memory 30 upon the initial request to play audio, which determination is made at step 209, the compressed audio file(s) are read from the HDD 36 and/or CD-ROM drive 38 and loaded into system memory 30, at step 210. After the compressed audio files are loaded into system memory at step 210, or if the audio file(s) are already in system memory, which determination is made at step 209, the audio files are then decompressed, at step 211, using the system CPU 26. DMA transfer(s) to the codec 42 are initialized for the decompressed audio data, at step 212, and then the output signal from the Codec 42 is amplified (not shown in FIG. 2) by the amplifier 44 to drive the speakers and/or headset 46. After the DMA transfer(s) are initialized, at step 212, control loops back to step 208, to determine whether an audio decompression request is pending. ## Playlist Software Operation [0067] FIG. 5 is another generalized overall block diagram of an exemplary system 31 consistent with another embodiment of the present invention. In this exemplary embodiment, the system 31 includes portable memory media 80 that can be used to hold the playlist data and/or compressed file data. The memory media 80 can be Smart-Card media, Memory Stick media, PCMCIA memory media and/or other portable media known in the art. If the system is ON and media is detected as being present at the portable memory media location (e.g., by insertion of a Smart Card, PCMCIA, CardBus card, Memory Stick or other media into an appropriate slot), the memory reader generates an interrupt to the South Bridge 32. The special purpose circuit 40 of this embodiment also receives the interrupt and generates a command to tell the operating system to launch an appropriate application (e.g., Windows Media Player) to read the playlist data on the memory device 80. In this instance, the application takes control to read the playlist file and retrieve the audio data, either from the memory device 80 or some other location specified in the playlist file. Similarly, when the mini-OS is operational, the special purpose circuit 40 is adapted to check if a memory device 80 is present, and to scan the device for playlist data. The system then operates as described above.